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Background. Antibiotic use predisposes patients to Clostridium difficile infections (CDI), and approximately
32% of these infections are community-associated (CA) CDI. The population-level impact of antibiotic use on
adult CA-CDI rates is not well described.
Methods. We used 2011 active population- and laboratory-based surveillance data from 9 US geographic locations

to identify adult CA-CDI cases, defined as C difficile-positive stool specimens (by toxin or molecular assay) collected
from outpatients or from patients ≤3 days after hospital admission. All patients were surveillance area residents and
aged ≥20 years with no positive test ≤8 weeks prior and no overnight stay in a healthcare facility ≤12 weeks prior.
Outpatient oral antibiotic prescriptions dispensed in 2010 were obtained from the IMS Health Xponent database. Re-
gression models examined the association between outpatient antibiotic prescribing and adult CA-CDI rates.
Results. Healthcare providers prescribed 5.2 million courses of antibiotics among adults in the surveillance pop-

ulation in 2010, for an average of 0.73 per person. Across surveillance sites, antibiotic prescription rates (0.50–0.88
prescriptions per capita) and unadjusted CA-CDI rates (40.7–139.3 cases per 100 000 persons) varied. In regression
modeling, reducing antibiotic prescribing rates by 10% among persons ≥20 years old was associated with a 17%
(95% confidence interval, 6.0%–26.3%; P = .032) decrease in CA-CDI rates after adjusting for age, gender, race, and
type of diagnostic assay. Reductions in prescribing penicillins and amoxicillin/clavulanic acid were associated with
the greatest decreases in CA-CDI rates.
Conclusions. Community-associated CDI prevention should include reducing unnecessary outpatient antibiotic

use. A modest reduction of 10% in outpatient antibiotic prescribing can have a disproportionate impact on reducing
CA-CDI rates.
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Clostridium difficile infection (CDI) has become an
increasingly common cause of healthcare-associated

infectious diarrhea [1], and the national burden
among patients admitted to a hospital setting is estimat-
ed to be 250 000 cases per year [2]. In recent years, CDI
has been increasingly reported among mostly adult per-
sons with no recent stays in hospitals or long-term care
facilities [3–5].Community-associated (CA) CDI repre-
sents as many as 32% of all CDI cases [5–7], and this
statistic may be increasing [5, 8].
A recent meta-analysis using data from 8 studies across

several regions in the world showed that exposure to sev-
eral antibiotic categories, including clindamycin, fluoro-
quinolones, cephalosporins, penicillins, macrolides, and
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sulfonamides/trimethoprim, was associated with increased risk of
CA CDI in adults [9]. Studies have demonstrated geographic
variation and widespread overuse of antibiotics in US outpatient
settings [10, 11]. Although previous studies have assessed patient-
level risk for CDI in the community, an assessment of this risk on
a population level is important to guide prevention strategies.
To determine the impact of outpatient antibiotic prescriptions

on adult rates of CACDI, we analyzed population-based CA-CDI
rates from several US geographic locations and oral antibiotic
prescribing practices in these regions using a national commer-
cial pharmacy database. We then quantified the expected effect of
lowering rates of antibiotic prescribing on CA-CDI rates.

METHODS

Emerging Infections Program
The Emerging Infections Program (EIP) C difficile surveillance is
an active population- and laboratory-based surveillance that has
tracked CDI in both inpatient and outpatient healthcare settings
since 2009. The surveillance methods have been described else-
where [12]. For this analysis, we used 2011 CDI surveillance
data from 33 counties in 9 US states, including California
(San Francisco County) Colorado (Adams, Arapahoe, Denver,
Douglas, and Jefferson Counties), Connecticut (New Haven
County), Georgia (Clayton, Cobb, DeKalb, Douglas, Fulton,
Gwinnett, Newton, and Rockdale Counties), Maryland (Caroline,
Cecil, Dorchester, Frederick, Kent, Somerset, Talbot, Queen
Anne’s, Washington, Wicomico, and Worcester Counties), Min-
nesota (Benton, Morrison, Stearns, and Todd Counties), New
Mexico (Bernalillo County), New York (Monroe County), and
Oregon (Klamath County), representing a total of 10.4 million
persons under surveillance. We defined an adult CA-CDI case
as a surveillance area resident ≥20 years of age with a positive
C difficile toxin or molecular assay on a stool specimen who
also met the following criteria: (1) the positive C difficile speci-
men was collected as an outpatient or ≤3 days after hospital ad-
mission (admission date = day 1); (2) the patient had no positive
C difficile specimen within the previous 8 weeks; and (3) the pa-
tient had no documented overnight stay in a healthcare facility
(hospital or long-term care facility) within the prior 12 weeks.

Additional Data Sources
Previous analysis of EIP data has shown that CA-CDI rates
should be adjusted for race, sex, age, and use of nucleic acid am-
plification testing (NAAT) [13].The NAAT usage was estimated
based on a survey of laboratories serving the catchment popu-
lation in 2011 [14].
Population denominator data for 2011 was obtained from US

census to calculate incidence [15]. Data on oral antibiotic prescrip-
tions dispensed during 2010 in the United States were extracted
from the IMS Health Xponent database, which represents a
100% projection of prescription activity on the basis of a sample

of greater than 70% of all US prescriptions. These data represent all
outpatient antibiotic prescriptions, across all payers, including re-
tail pharmacies and federal government and nongovernmental
mail service pharmacies. Prescription counts were summarized
by drug category, and patient age and sex, according to the county
where the prescriber was located. Antibiotics were categorized ac-
cording to the IMS Health Uniform System of Classification.
Persons <20 years of age were excluded from the denominators be-
cause the case definition only includes persons ≥20 years of age.
The numbers of prescriptions and US census denominators

were used to calculate prescribing rates [15].

Statistical Analysis
Generalized linear-mixed models with negative binomial distri-
bution were built to examine the association between EIP site-
specific antibiotic prescribing rates, demographic, and diagnostic
factors with CA-CDI incidence. Because CDI incidence varied
across surveillance sites, a random intercept was specified to ac-
count for the site variations. The candidate variables for the mod-
els included age, sex, race, percentage of urban population, NAAT
usage, percentage of population between 18 and 64 years of age
without insurance, and average of outpatient visits per hospital in
each surveillance site. Final models were obtained using a back-
ward selection with a stay criterion of P < .05. Separate models
were created for each major class of oral antibiotic and for all
oral antibiotics combined. The ratio of the generalized χ2 statistic
and its degrees of freedom was calculated to evaluate the model
fit. A ratio close to 1 indicates a good fit. Analyses were performed
using SAS software, version 9.3 (SAS Institute Inc., Cary, NC).
Overall, 18% of CA-CDI cases did not have race information

available in medical charts. When race was missing, data were
imputed based on the known population distribution of race
by age, sex, and surveillance site. Because the IMS Health Xpo-
nent database does not track the race of persons filling prescrip-
tions and this information is also not available from other data
sources, we assumed that antibiotics were prescribed in propor-
tion to the prevalence of white and non-white persons in that
EIP site, based on census data.

Human Subject Research Considerations
The EIP-CDI surveillance was approved by the Institutional Re-
view Boards at the Centers for Disease Control and Prevention
and participating EIP sites. Waivers of informed consent to re-
view medical records were obtained in EIP sites where CDI was
not reportable to the state health department.

RESULTS

Incidence of Community-Associated Clostridium difficile
Infection
From January 1, 2011 through December 31, 2011, 4682 adult
(≥20 years of age) CA-CDI cases were identified. Of these cases,
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39% were ≥65 years of age, 37% were male, and 80% were of
white race. Unadjusted CA-CDI incidence varied across the 9
sites (Figure 1), with the lowest incidence in California (40.7
cases per 100 000 population) and the highest incidence in Min-
nesota (139.3 cases per 100 000 population).

Outpatient Antibiotic Prescribing Rates
In the EIP surveillance areas, 5 521 457 oral antibiotic prescrip-
tions were filled among adults ≥20 years of age in 2010, cor-
responding to an oral antibiotic prescribing rate of 0.73
prescriptions per person. Antibiotic prescribing varied by EIP
site, with the highest rate in Connecticut (0.88 prescriptions
per capita) and the lowest rate in Oregon (0.50 prescriptions
per capita) (Figure 1).
Antibiotic prescribing rates also varied by age and gender

groups within EIP sites (Figure 2), and they were higher

among males and females aged 65 years and older (0.91 and
1.02 prescriptions per capita, respectively). Antibiotic prescrib-
ing rates were lower among those aged 20–64, with a large dis-
crepancy in antibiotic prescribing between males and females
aged 20–64 (0.50 vs 0.85 prescriptions per capita, respectively).
Among all adults, females were prescribed more antibiotics
more frequently than males (0.88 vs 0.56 prescriptions per cap-
ita, respectively) in 2010.
Across the EIP surveillance sites, the most common oral an-

tibiotics prescribed were macrolides (0.157 prescriptions per
capita), followed by penicillins (excluding β-lactam/β-lactamase
inhibitor combinations) (0.137 prescriptions per capita), fluoro-
quinolones (0.122 prescriptions per capita), cephalosporins
(0.086 prescriptions per capita), tetracyclines (0.075 pres-
criptions per capita), trimethoprim/sulfamethoxazole (0.061
prescriptions per capita), β-lactams with increased activity
(amoxicillin/clavulanic acid) (0.056 prescriptions per capita),
lincosamides (clindamycin) (0.029 prescriptions per capita),
and others (0.003 prescriptions per capita) (Figure 3). There
was variability across surveillance sites on the number of pre-
scriptions per capita for each antibiotic category (Figure 3).

Estimated Reductions in Community-Associated Clostridium
difficile Infection With Reductions in Outpatient Antibiotic Use
The final models included the following confounders: age group
(20–64, ≥65), gender, race (white, non-white), and type of di-
agnostic assay (NAAT, other) (Table 1). The ratios of the gen-
eralized χ2 statistic to degrees of freedom ranged from 0.91 to
0.95, indicating that the variability in these data were properly
modeled, without residual overdispersion.
These models were used to calculated the change in CA-CDI

incidence among adults (≥20 years old) associated with a 10%
change in antibiotic use, which has been shown to an achievable
target in various quality improvement studies [16], adjusting for
gender, race, and use of molecular diagnostic assays (Table 1).
Overall, a 16.8% (6.0%–26.3%; P = .003) decrease in CA-CDI
incidence was predicted for each 10% reduction in the use of
all antibiotics (Table 2), corresponding to 885 (95% confidence
interval [CI], 315–1390) fewer cases of CACDI annually among
all EIP sites combined. Separate models were also created to
model the expected effects of reducing prescriptions of specific
antibiotic classes by 10%. Among the drug classes, reductions in
penicillin prescriptions were associated with the largest decrease
in CA-CDI incidence (12.1%; 95% CI, 2.9%–20.5%; P = .012),
followed by β-lactams with increased activity (9.4%; 95% CI,
1.6%–16.5%; P = .020), lincosamides (7.6%; 95% CI, 1.4%–

13.4%; P = .017), cephalosporins (7.5%; 95% CI, .7%–13.8%;
P = .031), trimethoprim/sulfamethoxazole (7.4%; 95% CI,
.7%–13.7%; P = .030), tetracyclines (6.9%; 95% CI, 1.2%–

12.3%; P = .019), and macrolides (6.8%; 95% CI, .03%–13.1%;
P = .049). Of note, although a 10% reduction in fluoroquinolone
prescribing was associated with a 4.8% (95% CI, −1.8%–11.1%;

Figure 2. Oral outpatient antibiotic prescription rates among adults ≥20
years of age, by gender and age groups, in Emerging Infection Program
surveillance sites, 2010. P < .001 comparing all gender pairs by chi-squared
test.

Figure 1. The 2011 community-associated Clostridium difficile (CA-CDI)
unadjusted incidence and 2010 oral outpatient antibiotic prescription rates,
by Emerging Infections Program site.
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P = .149) decrease in CACDI, these results were not statistically
significant. Likewise, a separate model of a 10% reduction in flu-
oroquinolone prescribing among adults ≥65 years old was not
associated with a statistically significant decrease in CA-CDI
(5.4%; 95% CI, −1.0% to 11.4%; P = .095).

DISCUSSION

Based on these data collected in 9 diverse US geographic areas, we
expect that reducing all oral outpatient antibiotic prescribing

among adults by 10% should result in a substantial reduction
(17%) in CA-CDI rates. Our finding is particularly important
in the context of how frequently antibiotics are prescribed unnec-
essarily in the outpatient setting. A study from Chitnis et al [12],
using the same study sites as our study, reported 64% of CA-CDI
cases were recently exposed to antibiotics, and the most frequent
indication was an upper respiratory infection—a well recognized
source of inappropriate antibiotic use in outpatient settings
[17–19]. A recent US study based on the National Hospital Am-
bulatory Medical Care surveys suggested that up to 25% of

Figure 3. Oral outpatient antibiotic prescription rates among adults ≥20 years of age, by drug class, in Emerging Infection Program sites, 2010.
*Amoxicillin/clavulanic acid is the only oral antibiotic in this category. **Clindamycin is the only oral antibiotic in this category.

Table 1. Model Parameters of CA-CDI Association With 10% Increase in Oral Outpatient Antibiotic Prescribing, Adjusted for Gender,
Race, and Use of Molecular Diagnostic Assays, Among Adults (≥20 Years Old), in Emerging Infections Program Surveillance Sites*

Variable Coefficient Standard Error Rate Ratio 95% CI P Value

Age 20–64 y — — 1.00 (reference) — —

Age 65+ 0.938 0.087 2.55 2.15–3.03 <.0001
Non-white race — — 1.00 (reference) — —

White race 0.339 0.071 1.4 1.22–1.61 <.0001

Male 0.000 — 1.00 (reference) — —

Female 0.194 0.088 1.21 1.02–1.44 .028

Nucleic acid amplification testing use increased by 10% 0.065 0.028 1.07 01.01–1.13 .019

Antibiotic prescribing increased by 10% 0.183 0.062 1.2 1.06–1.36 .003

Abbreviations: CA-CDI, community-associated Clostridium difficile infections; CI, confidence interval.

*Generalized χ2/degree of freedom: 0.91.
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ambulatory antibiotic prescriptions for adults were for conditions
in which antibiotics are rarely indicated [11], suggesting persis-
tent overuse of antibiotics in the outpatient setting and many
opportunities for improving antibiotic use. Based on our data,
CA-CDI reduction should be added to the list of benefits of im-
proving outpatient antibiotic prescribing, which already includes
reducing drug-resistant respiratory infections and preventing ad-
verse drug events. Furthermore, interventions aimed at reducing
unnecessary antibiotic use in the outpatient setting should be in-
cluded in CA-CDI prevention efforts.
In adults, numerous studies have highlighted the limited ef-

ficacy of antibiotics for treating acute upper respiratory tract
infections, including acute cough/bronchitis and acute pharyn-
gitis [19, 20]. Despite these studies, antibiotics continue to be
frequently prescribed to treat these infections in the United
States, including 60% of cases of acute pharyngitis [21] (antibi-
otics are only indicated for streptococcal pharyngitis, compris-
ing approximately 10% of acute pharyngitis [22]) and 71% for
cases of ambulatory visits for bronchitis [23]. Treatment guide-
lines were developed for both adult and pediatric patients, in
addition to education materials for primary care providers
and patients [24–26]. In 2003, the Centers for Disease Control
and Prevention launched the “Get Smart: Know When Antibi-
otics Work” campaign with a focus on reducing unnecessary
prescription of antibiotics for acute upper respiratory infections
in the community. A 4-month, regional “Get Smart” media
campaign was associated with a 3.8%–8.8% reduction in

regional antibiotic dispensing [25], demonstrating that reducing
unnecessary outpatient antibiotic use is feasible. However, fur-
ther efforts may be needed to encourage widespread adoptions
of effective interventions [27–29].
The dental setting is another common source of antibiotic ex-

posure. In a previous study using the same EIP surveillance sys-
tem, 15% of CA-CDI cases with antibiotic exposure in the prior
12 weeks had been prescribed antibiotics by their dentist [12].Re-
cent guidelines have recommended more restrictive use of antibi-
otics for prevention of infective endocarditis [30] and orthopedic
implant infections [31] during dental procedures. Additional
work is needed to evaluate and improve adherence to these guide-
lines to reduce unnecessary antibiotic use in dental settings.
Finally, our analysis showed that females were prescribed

more antibiotics than males; an association also seen with
CA-CDI rates where females have higher CDI rates compared
to males [13]. Increased use of antibiotics in females may ex-
plain the gender disparities observed in CDI rates.
To our knowledge, this is the first study to use variation in CA-

CDI rates and antibiotic prescribing across various settings to
quantify the potential effect of reducing outpatient antibiotic pre-
scribing on CDI rates. If outpatient healthcare providers wish to
target efforts to reduce unnecessary antibiotic use to maximize im-
pact on CA-CDI in their community, then, based on our study,
reductions in prescriptions for oral penicillins and β-lactams
with increased activity (amoxicillin/clavulanic acid) will potentially
have the greatest impact on associated reductions in CA CDI.

Table 2. Modeled Reduction of Adult (≥20 Years Old) Community-Associated Clostridium difficile Infections (CA-CDI) Associated With
10% Reductions in Oral Outpatient Antibiotic Prescribing, Adjusted for Gender, Race, and Use of Molecular Diagnostic Assays, in Emerg-
ing Infections Program Surveillance Sites

Antibiotic Class
Prescriptions

Per Capita, 2010

CA-CDI
Cases,
2011

Absolute CA-CDI
Reduction for Each
10% Reduction in

Drug Use

95%
Confidence
Interval

CA-CDI Rate
Reduction for Each
10% Reduction in

Drug Use
95% Confidence

Interval
P

Value

All classes 0.731 5284 885 (315–1390) 16.8% (6.0%–26.3%) .003

Penicillins 0.137 5284 639 (151–1081) 12.1% (2.9%–20.5%) .012

β-lactam, increased
activitya

0.056 5284 495 (84–873) 9.4% (1.6%–16.5%) .020

Lincosamidesb 0.029 5284 401 (75–707) 7.6% (1.4%–13.4%) .017

Cephalosporins 0.086 5284 396 (39–730) 7.5% (.7%–13.8%) .031
Trimethoprim/
sulfamethoxazole

0.061 5284 392 (39–722) 7.4% (.7%–13.7%) .030

Tetracyclines 0.075 5284 365 (62–651) 6.9% (1.2%–12.3%) .019

Macrolides 0.157 5284 360 (1–694) 6.8% (.03%–13.1%) .049
Fluoroquinolones
(all adults)

0.122 5284 255 (−94–581) 4.8% (−1.8%–11.0%) .149

Fluoroquinolones
(age 65+)

0.238 1880 102 (−18 to 215) 5.4% (−1.0%–11.4%) .095

Other antibiotics 0.003 5284 104 (−375 to 542) 2.0% (−7.1%–10.3%) .658

aAmoxicillin/clavulanic acid is the only oral antibiotic in this category.
bClindamycin is the only oral antibiotic in this category.
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These antibiotic classes are among those most often prescribed for
upper respiratory infections in the United States [18].
Exposure to fluoroquinolone antibiotics has been well de-

scribed as a risk factor for Clostridium difficile infection in the
inpatient setting [32, 33], and a recent meta-analysis concluded
that exposure to fluoroquinolones was associated with a more
than 5-fold increased risk for developing CA CDI [9]. Given
the well described association between fluoroquinolone expo-
sure and individual risk for CDI, it was surprising that our
study did not find a significant association between reducing
fluoroquinolone prescriptions and CA-CDI rates. This may be
explained by geographic variability in CA-CDI strains. The
North American Pulsed Field Gel Electrophoresis type 1
(NAP1) strain is known to have high resistance to fluoroquin-
olones [34], and reductions in fluoroquinolone use have been
associated with decreasing NAP1 prevalence [35]. Our analysis
was limited to 9 US geographic locations, where the NAP1
strain was present in approximately 21% of CA-CDI cases
[36], compared with approximately 36% during the same time
period in England [35] and approximately 30% in Canada [37].
Therefore, the lower prevalence of NAP1 strain among CA-CDI
cases in our surveillance system may explain the lack of associ-
ation between fluoroquinolone use and predicted changes in
CA-CDI incidence. Further research is needed to determine
whether varying C difficile strain prevalence affects the success
of specific interventions to reduce inappropriate antibiotic use.
There are several limitations to this study. First, this is a

large-scale ecological study and, as such, no inferences of
individual-level association between an antibiotic exposure
and development of CA-CDI can be made. In addition, the EIP
program operates in several geographic areas with diverse pop-
ulations; these specific areas were not randomly selected to be
representative, and, therefore, our findings may not be general-
izable to the entire United States. Furthermore, it is not known
whether clinicians have equal sensitivity for ordering CDI diag-
nostic testing across geographic areas. There are also limitations
to using the IMS Health Xponent antibiotic prescribing data.
This database only tracks the number of prescriptions filled at
a pharmacy and does not assess whether the patient used the
medication as prescribed. Location data is also recorded by
the county of the prescribing physician and not by the county
of residence for the patient. Although this could potentially in-
troduce inflated prescribing results in urban counties with high-
er concentrations of physicians, we chose to analyze aggregate
adjacent counties within metropolitan areas to minimize this
bias. The IMS Xponent also does not capture patient race
data; as a result, we had to assume equal antibiotic prescribing
for white and non-white persons in our mixed model. We could
not identify any US national data that has determined whether
racial disparities exist for prescriptions of all antibiotics, and
the literature regarding specific indications is mixed, with
some evidence suggesting that non-whites are more likely to

be prescribed antibiotics for upper respiratory tract infections
in outpatient settings [38], although African-Americans may
be less likely to receive inappropriate antibiotics for acute asth-
ma exacerbations and otitis media [39]. Further research re-
garding racial disparities in antibiotic prescribing is needed to
improve the accuracy of our models. Finally, 2011 antibiotic
prescribing data were not available at the time of this study to
directly match the period of CA-CDI surveillance. However,
very little year-to-year variation in antibiotic prescribing has
been observed comparing 2010 to datasets from previous
years, and, thus, we do not expect this to significantly affect
our findings. The IMS Health Xponent data captures the largest
proportion of US outpatient antibiotic prescribing and is the
most robust data source available.

CONCLUSIONS

In conclusion, implementation of outpatient interventions to
reduce inappropriate antibiotic use could substantially decrease
CA-CDI rates. Oral penicillins and β-lactams with increased ac-
tivity (amoxicillin/clavulanic acid), which are commonly used
to treat acute respiratory infections, were the 2 antibiotic classes
for which reduction in use was associated with the greatest de-
clines in CA-CDI rates. Further research is necessary to under-
stand whether the prevalence of particular C difficile strains
influences the targeting of programs to reduce inappropriate an-
tibiotic use. Our study suggests that reductions in CA-CDI rates
would be an additional benefit of interventions to improve an-
tibiotic use in US outpatient settings.
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